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Document Classification Beyond English: A Labeled Data Bottleneck

- Most NLP techniques/datasets are developed in English
« 7,000 living languages (~4,000 written)
* Our focus: multilingual document classification (e.g., emergency detection in Uyghur)
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Document Classification Beyond English: A Labeled Data Bottleneck

- Most NLP techniques/datasets are developed in English
- 7,000 living languages (~4,000 written)

* Our focus: multilingual document classification (e.g., emergency detection in Uyghur)
- Issue: expensive to obtain labeled documents
- Cross-lingual classification: use labeled documents from a source language
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Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?

“We need medical supplies” ?? “ai ¥ (g ladats (Y1518 S 50"
Source Language ¢ ‘ Target Language

Cross-lingual resources required!



Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?

> Approach 1: Transfer supervision across languages

Parallel Corpora
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Machine Translation
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Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?

> Approach 1: Transfer supervision across languages

Parallel Corpora

Machine Translation
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Google Translate is available
for 103/4,000 languages



Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?
> Approach 1: Transfer supervision across languages (-) expensive

> Approach 2: Train zero-shot classifiers

Pre-trained Cross-lingual Embeddings / Multilingual Language Models




Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?
> Approach 1: Transfer supervision across languages (-) expensive

> Approach 2: Train zero-shot classifiers

Pre-trained Cross-lingual Embeddings / Multilingual Language Models
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Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?
> Approach 1: Transfer supervision across languages (-) expensive

> Approach 2: Train zero-shot classifiers

Pre-trained Cross-lingual Embeddings / Multilingual Language Models
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(-) Target-language documents are not considered during training
« May not capture patterns specific to the target language or task



Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?
> Approach 1: Transfer supervision across languages (-) expensive

> Approach 2: Train zero-shot classifiers

Pre-trained Cross-lingual Embeddings / Multilingual Language Models
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zero-shot classifier

(-) Target-language documents are not considered during training
« May not capture patterns specific to the target language or task

(-) High-quality representations are not always available
- Multilingual BERT available for only 104 out of 4,000 languages
 High-coverage bilingual dictionaries not available for all languages
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Cross-Lingual Text Classification: Approaches & Resources

- Challenge: how to bridge the source and target languages?
> Approach 1: Transfer supervision across languages (-) expensive
> Approach 2: Train zero-shot classifiers (=) not effective / not available

> Our approach: Transfer weak supervision using minimal resources

(+) Does not require parallel corpora / machine translation / multilingual representations
(+) Has robust performance across 18 diverse languages and 4 tasks
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We Transfer Weak Supervision Using Minimal Resources

Labeled

-
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-
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-
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Translation Budget 5 € [2, 500]
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# “hospital” —— Lila, 3390 +
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We Transfer Weak Supervision Using Minimal Resources

Labeled

-
En

-
En

-
En

Tk T

-
En

Translation Budget 5 € [2, 500]

= [Classifier)

e.g., B=3 Unlabeled
. —afidn —afde —afde
“injured” —— OLaad b Ug| [Ug| |Ug
# “hospital” — = Llaysisgs + - -
Target Language

Source Language

* OQur contributions:

1. Present a method for cross-lingual transfer under a limited translation budget

2. Show how to train any target classifier without labeled target documents

3. Show the benefits of generating weak supervision in 18 diverse languages
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Outline

2. Our Approach: Cross-Lingual Teacher-Student (CLTS)



Cross-Lingual Transfer Under Limited Translation Budget

- Goal: train a target classifier given
-Labeled documents in the source language
- Unlabeled documents in the target language

- Budget for up to B word translations

B=2 POSITIVE / NEGATIVE

t
(Classifiea

Source Language Target Language
(English) (French)




Cross-Lingual Transfer Under Limited Translation Budget

- Goal: train a target classifier given
-Labeled documents in the source language
- Unlabeled documents in the target language

- Budget for up to B word translations

- Our idea: transfer only the most indicative keywords (seed words)

B=2 POSITIVE / NEGATIVE
t
POSITIVE “wonderful” —— “magnifique” POSITIVE Cl "
NEGATIVE “disappointing” ——» “décevant’” NEGATIVE assiier
“nightﬂ
Source Language Target Language
(English) (French)




Cross-Lingual Transfer Under Limited Translation Budget

- Goal: train a target classifier given
-Labeled documents in the source language
- Unlabeled documents in the target language

- Budget for up to B word translations

- Our idea: transfer only the most indicative keywords (seed words)

B =72 POSITIVE / NEGATIVE
297
299
" POSITIVE “wonderful” —— “magnifique” POSITIVE
— “ g o Classifier
NEGATIVE “disappointing” —— “décevant” NEGATIVE
“night”
Source Language Target Language
(English) (French)




Cross-Lingual Teacher-Student (CLTS)

1. Seed-word extraction in the source language

2. Cross-lingual seed weight transfer

3. Teacher-Student co-training in the target language

Budget B
“wonderful” “magnifique”
“disappointing” “décevant” POS T/ NEG

Seed Word W
Extractor

Source Language

Z
>(Teacher) i

Target Language
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Cross-Lingual Teacher-Student (CLTS)

1. Seed-word extraction in the source language

Budget B
“wonderful” “magnifique”
“disappointing” “décevant” POS / NEG

A\

T

Seed Word W
Extractor

Source Language

Z
>(Teacher) i

Target Language
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Training a Sparse Classifier in the Source Language

1. Seed-word extraction in the source language
- Extract B seed words from the weight matrix W of a classifier
- Use B as sparsity regularizer during training

Sparse Classifier

POS ’ Budget B

NEUT| 0 02 o 01 o |W
POS| 0 35 0 25 0
X e O
(@) AN O
o)) A®) N\
0{\ D ~o°‘
S 4
“... a perfect book that opens

interesting discussions ...”

Source Language Target Language




Transferring the Sparse Classifier Across Languages

2. Cross-lingual seed weight transfer

- Obtain translations for the B seed words and transfer their weights
- Initialize target classifier based on the translated seed words

Sparse Classifier Sparse Classifier
POS Budget B POS
NEG| 0 |-1.6| O 42| 0 | 1014210 0]-1.6
NEUT| 0 |-02| o |01l o |W Z o |o01|0 o|-02
POS| 0 |35 0 |-25| O 01250 0]35
& Q% .

N 2
(\0 \(b\.o o{&Q . §00 @(Q (\0
Qo ) (\o Q

“... tout est parfait et j'aurais aime
que ce livre ne finisse jamais ...”

Source Language Target Language
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Weakly-Supervised Co-Training in The Target Language

2. Cross-lingual seed weight transfer

3. Teacher-Student co-training in the target language
- Train a more powerful Student on unlabeled target documents
« Student generalizes better than the Teacher

Teacher Student
Budget B POS o POS

lofa2]o of-16

Z|olo1|o ol-02
0 |-25/0 0|35
" ~
RN N ST
& R

“... tout est parfait et j'aurais aime
que ce livre ne finisse jamais ...”

Target Language
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Cross-Lingual Teacher-Student (CLTS)

1. Extract B seed words (non-zero columns in sparse VAV)
2. Translate seed words and transfer W to Z

3. Use Z as Teacher to (iteratively) train Student

Cross-Lingual Transfer Teacher-Student
of Seed Words Co-Training
“wonderful” — “magnifique”
“disappointing” — “decevant” POS /TNEG'
Seed Word\ 4 V' o
Teacher
Extractor J
‘... a wonderful book filled . C est une magmf ique
with engaging stories...” histoire que j’ai dévorée...”
Source Language Target Language




Outline

1. Intro: Cross-Lingual Text Classification

2. Our Approach: Cross-Lingual Teacher-Student (CLTS)

3. Experiments in 18 languages

4. Conclusions



Experiments

18 languages

13. Sinhalese (Si
14. Slovak (Sk

1. Bulgarian (Bg) 4 tasks
2. German (De) 1. Topic classification of news documents (MLDoc)
3. Spanish (Es) » 4 classes: Corporate/Economics/Government/Markets
4. Persian (Fa) * 7 languages: De, Es, Fr, It, Ja, Ru, Zh
5. French (Fr) . e . :
_ 2. Sentiment classification of product reviews (CLS)
O. Croatian (Hr) L. .
, - 2 classes: positive/negative
/. Hungarian (Hu)
3 italian (it 3 languages: De, Fr, Ja
9: Japanese (Ja) « 3 product domains per language: books, dvd, music
10. Polish (PlI) 3. Sentiment classification of tweets (TwitterSent/SentiPers)
11. Portuguese (PY) - 3 classes: positive/neutral/negative
12. Russian (Ru) - 12 languages: Bg, De, Es, Fa, Hr, Hu, PI, Pt, Sk, SI, Sv, Ug
)
)

4. Medical emergency situation detection (LDC LORELEI)
2 classes: medical / non-medical

15.  Slovenian (Sl)
16.  Swedish (Sv) * 2 languages: Si, Ug
17. Uyghur (UQ)
18. Chinese (Zh)
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Results Summary

- Student outperforms Teacher by 56% (!!') on average across 18 languages
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Results Summary

- Student outperforms Teacher by 56% (!!') on average across 18 languages
- CLTS is effective with as few as 20 word translations
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., Results in the CLS Dataset
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Results Summary

- Student outperforms Teacher by 56% (!!') on average across 18 languages
- CLTS is effective with as few as 20 word translations
« CLTS sometimes outperforms even more expensive approaches by up to 12%
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., Results in the CLS Dataset
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See our paper for more results and ablation experiments!



Transferring Weak Supervision With CLTS > Zero-Shot

CLS Dataset

80.4
75 71.4

Average
Accuracy
@)

o

25

MultiBERT MonoBERT
(zero-shot) (CLTS, B=20)

> With just 20 translations CLTS outperforms zero-shot approaches by 12.6%
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Applying CLTS for Low-Resource Languages

>~ Medical emergency situation detection in Uyghur and Sinhalese

English -> Uyghur Sinhalese
1. injured -> Loy Lo DR R
2. attacks ->  Nog>ia g0

3. medical -> medical GGAE®B

4., crisis -> WS FORe B

5. disease ->  JowsS 60IG

6. malaria ->  JswsS oS oo 0680579
7. health > Guedeodle Lw GBS

8. injuring —>  sdsdo)y Lo MR O®
9. yemen ->  Jo—no) RGN

10. hospitals -> NS LEyha s g0 deNole

Accuracy (B = 50)

100
B Teacher 75 008 =
Student-LogReg S0 53 9 30.4

25 .
- I

Uyghur Sinhalese




CLTS is Robust To Translation Errors

- Seed words may translate to the wrong words

“Corporate” Topic (En) “Corporate” Topic (Es)

B

“shares” > “comparte” “acciones”

X v

- Adding simulated translation noise of several types and severity:

Student
% > CLTS is effective even with 30% of
70
. seed words are translated to wrong
> words

iff

AVG Accurac
= N w SN (0]
o o o o o o
i

0.2 0.4 0.6 0.8
Translation Noise




Outline

1. Intro: Cross-Lingual Text Classification
2. Our Approach: Cross-Lingual Teacher-Student (CLTS)
3. Experiments in 18 languages

4. Conclusions



CLTS Transfers Weak Supervision With Minimal Resources

1. Enable cross-lingual transfer under a limited translation budget
» Use budget as a sparsity regularizer when training a source classifier
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CLTS Transfers Weak Supervision With Minimal Resources

1. Enable cross-lingual transfer under a limited translation budget
» Use budget as a sparsity regularizer when training a source classifier

2. Train any target classifier without labeled target documents
» Employ Teacher-Student co-training
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CLTS Transfers Weak Supervision With Minimal Resources

1. Enable cross-lingual transfer under a limited translation budget
» Use budget as a sparsity regularizer when training a source classifier

2. Train any target classifier without labeled target documents
» Employ Teacher-Student co-training

3. Show the benefits of generating weak supervision in 18 languages
» CLTS is effective with as few as 20 seed word translations
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CLTS Transfers Weak Supervision With Minimal Resources

1. Enable cross-lingual transfer under a limited translation budget
» Use budget as a sparsity regularizer when training a source classifier

2. Train any target classifier without labeled target documents
» Employ Teacher-Student co-training

3. Show the benefits of generating weak supervision in 18 languages
» CLTS is effective with as few as 20 seed word translations

> CLTS can potentially be applied for emerging tasks in low-resource languages
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Thank you!

CLTS Code: https://github.com/gkaramanolakis/clts

Contact
gkaraman@cs.columbia.edu
https://gkaramanolakis.github.io
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