TXtract: Taxonomy-Aware Knowledge Extraction for Thousands of Product Categories

Giannis Karamanolakis

Columbia University gkaraman@cs.columbia.edu

Jun Ma, Xin Luna Dong

Amazon.com {junmaa, lunadong}@amazon.com

Product Understanding for Search and Question Answering

Product Understanding for Search and Question Answering

"Alexa, which shampoos contain argan oil?"

Need to Store Structured Knowledge About Products

Understanding Values for Product Attributes

flavor: ???

Understanding Values for Product Attributes

flavor: ???

(-) Issue: catalog is missing attribute values for many products

• Goal: extract attribute values from product titles & descriptions

amazon	Grocery & Gourmet Food 🔻		Q
Varmont's Finase Standbarry Strawberry Strawberry	Brand Ben & Jerry's St In Stock. • Ben & Jerry's St • Includes Fairtrad	Flavor Strawberry Cheesecake	Size

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging

[Zheng et al., KDD'18] [Xu et al., ACL'19] [Rezk et al., ICDE'19]

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging

BIOE Tagging Example extracted *flavor* value: "mint chocolate cookie" OOOOBIIE OOOO DNN Chen & jerry's mint chocolate cookie ice cream 16 oz

9

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging
- Limitations of previous work:

(-) designed for a single category

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging
- Limitations of previous work:
 - (-) designed for a single category
 - (-) ignore product categories

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging
- Limitations of previous work:
 - (-) designed for a single category
 - (-) ignore product categories

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging
- Limitations of previous work:
 - (-) designed for a single category
 - (-) ignore product categories
 - (-) hard to capture diversity of categories

flavor? Not applicable

Vitamin

flavor: "fruit"

flavor: "fruit" Not valid

- Goal: extract attribute values from product titles & descriptions
- Previous work: deep neural networks for sequence tagging
- Limitations of previous work:
 - (-) designed for a single category
 - (-) ignore product categories
 - (-) hard to capture **diversity** of categories
 - (-) hard to scale to large product taxonomies in e-Commerce

- >100M products
- >10K categories
- Products/categories continuously added

• **TXtract:** a taxonomy-aware neural network for attribute value extraction

- **TXtract:** a taxonomy-aware neural network for attribute value extraction
- Our Contributions:
 - 1. Consider multiple categories efficiently with a single model

• **TXtract:** a taxonomy-aware neural network for attribute value extraction

- 1. Consider multiple categories efficiently with a single model
- 2. Extract category-specific attribute values using conditional self-attention

• **TXtract:** a taxonomy-aware neural network for attribute value extraction

- 1. Consider **multiple** categories efficiently with a **single** model
- 2. Extract category-specific attribute values using conditional self-attention
- 3. Scale up extraction to hierarchical taxonomies with thousands of categories

• **TXtract:** a taxonomy-aware neural network for attribute value extraction

- 1. Consider multiple categories efficiently with a single model
- 2. Extract category-specific attribute values using conditional self-attention
- 3. Scale up extraction to hierarchical taxonomies with thousands of categories

• **TXtract:** a taxonomy-aware neural network for attribute value extraction

- 1. Consider **multiple** categories efficiently with a **single** model
- 2. Extract category-specific attribute values using conditional self-attention
- 3. Scale up extraction to hierarchical taxonomies with thousands of categories

• **TXtract:** a taxonomy-aware neural network for attribute value extraction

- 1. Consider **multiple** categories efficiently with a **single** model
- 2. Extract category-specific attribute values using conditional self-attention
- 3. Scale up extraction to hierarchical taxonomies with thousands of categories
- 4. Increase **robustness** to wrong category assignments using **multi-task** training

Outline

1. Attribute Value Extraction from Product Profiles

2. TXtract: Taxonomy-Aware Attribute Value Extraction

3. Experiments

4. Conclusions and Ongoing Work

Scaling to Thousands of Product Categories -Challenges

• Goal:

- Extracts attribute values for products ...
- ► ... from thousands of **diverse** categories
- ... organized in hierarchical taxonomies

Scaling to Thousands of Product Categories -Challenges

• Goal:

- Extracts attribute values for products ...
- In thousands of diverse categories
- ... organized in hierarchical taxonomies

• Approach1: train a separate DNN for each category?

Scaling to Thousands of Product Categories -Challenges

• Goal:

- Extracts attribute values for products ...
- In thousands of diverse categories
- ... organized in hierarchical taxonomies

- Approach1: train a separate DNN for each category?
- Approach 2: assume a single "flat" category?

(-) not effective: missing category-specific characteristics

TXtract: Taxonomy-Aware Attribute Value Extraction

• TXtract leverages the hierarchical product taxonomy

(+) efficient: single model for **all** categories

• "Small" categories: leverage products from related categories

TXtract: Taxonomy-Aware Attribute Value Extraction

• TXtract leverages the hierarchical product taxonomy

- (+) efficient: single model for **all** categories
- (+) effective: extracts category-specific attribute values
 - Product category -> attribute applicability, valid attribute values

TXtract

Extracts category-specific values

 $p(y_1, ..., y_T | x_1, ..., x_T, c)$

values text category

(-) Issue: products may be assigned to wrong taxonomy nodes!

TXtract

Extracts category-specific values

 $\begin{array}{c|c} p(\mathbf{y}_1, \dots, \mathbf{y}_T \mid \mathbf{x}_1, \dots, \mathbf{x}_T, \mathbf{c}) \\ \text{values} & \text{text} & \text{category} \\ \textbf{wrong} & \textbf{wrong} \end{array}$

(-) Issue: products may be assigned to wrong taxonomy nodes!
(-) Conditioning on wrong categories -> wrong values

Main Task

Extract category-specific values

 $p(y_1, ..., y_T | x_1, ..., x_T, c)$

Auxiliary Task

Predict categories from text $p(c \mid x_1, ..., x_T)$

Main Task

Extract category-specific values

 $p(y_1, ..., y_T | x_1, ..., x_T, c)$

Auxiliary Task

Predict categories from text

 $p(c \mid x_1, ..., x_T)$

Multi-Task Training of TXtract

Main Task

Taxonomy-Aware Attribute Value Extraction

Auxiliary Task

Taxonomy-Aware Category Prediction

Outline

- 1. Attribute Value Extraction from Product Profiles
- 2. TXtract: Taxonomy-Aware Attribute Value Extraction

3. Experiments: Taxonomy with 4,000 Product Categories

4. Conclusions and Ongoing Work

Experiments: Attribute Value Extraction

Dataset:

- 2 million products (sampled from Amazon.com webpages)
- 4,000 categories (sampled from Amazon's taxonomy)

- Attributes: brand, flavor, package size, ingredients
- Training: distant supervision for sequence tagging

Catalog values

flavor tags

Product ID	Brand	Flavor	Size	Ingredients									
BOOFZHEGGW	Fage	Plain	35.3 oz		Input	Ben	&	Jerry's	black	cherry	cheesecake	ice	cream
B0725VRRLP	Ben & Jerry's				Output	0	0	0	B	Ι	E	0	0

TXtract Effectively Leverages Product Categories

Average performance across **ALL** categories & attributes

[Zheng et al KDD'18]		Coverage (%)	Macro F1 (%)
ignores categories →	OpenTag	73.0	46.6
considers categories \rightarrow	TXtract	81.6 (+11.7%)	49.7 (+10.4%)

TXtract outperforms OpenTag across 4,000 categories

TXtract Effectively Leverages Product Categories

Average performance across **ALL** categories & attributes

[Zheng et al KDD'18]		Coverage (%)	Macro F1 (%)	
ignores categories →	OpenTag	73.0	46.6	
considers categories \rightarrow	TXtract	81.6 (+11.7%)	49.7 (+10.4%)	

TXtract outperforms OpenTag across 4,000 categories

TXtract outperforms other category-aware approaches [Johnson et al., TACL'17]
[Ma et al., KDD'19]

See more results and ablation study in our paper!

Outline

- 1. Attribute Value Extraction from Product Profiles
- 2. TXtract: Taxonomy-Aware Attribute Value Extraction
- 3. Experiments: Taxonomy with 4,000 Product Categories
- 4. Conclusions and Ongoing Work

Attribute Value Extraction -Scaling Up to Thousands of Product Categories

- •E-commerce domain is challenging!
 - Diverse categories

Assignments to wrong categories

Attribute Value Extraction -Scaling Up to Thousands of Product Categories

- •E-commerce domain is challenging!
 - Diverse categories

Assignments to wrong categories

•TXtract: hierarchical taxonomies with thousands of categories

(+) Efficient:

- single model trained on all categories in parallel
- (+) Effective:
 - Leverages taxonomy using conditional self-attention & multi-task training
 - Improves extraction quality (e.g., up to 15% higher coverage)

Towards Better, Large-Scale Product Understanding

flavor: "chocolate"

ingredients: "argan oil", ...

Towards Better, Large-Scale Product Understanding

Building an "automatic" knowledge graph of products [Saldana et al., KDD'20]

flavor: "chocolate"

ingredients: "argan oil", ...

[Saldana et al. KDD'20] AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types

Towards Better, Large-Scale Product Understanding

"Alexa, which shampoos contain argan oil?"

[Saldana et al. KDD'20] AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types

Thank you!

Giannis Karamanolakis

Columbia University gkaraman@cs.columbia.edu https://gkaramanolakis.github.io

Jun Ma, Xin Luna Dong

Amazon.com {junmaa, lunadong}@amazon.com

