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Problem of Focus - Text Classification
•Goal: classify input text (e.g., document, sentence, clause, …)  
          to pre-defined target classes (e.g., positive/negative sentiment)
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•Applications: 
-  Sentiment/emotion classification (e.g., Yelp, IMDB, Amazon, Twitter)

-  Categorization of news/financial documents (e.g., Reuters, Wall Street Journal)

-  Spam/fraud detection (e.g., Yahoo, Outlook)

-  User intent detection (e.g., Gmail, Siri, Alexa) 

-  Emergency detection (e.g., earthquake, outbreaks)

-  …

input text target class

“Totally dissatisfied with  
the service”

Negative Sentiment

x y



Text Classification - Approaches Over Time
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Use rules, hard-coded by humans

(—) limited generalization

x y
rules

Rule  
Engineering



Text Classification - Approaches Over Time
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Rule  
Engineering

Feature  
Engineering

Automatically learn “rules” from labeled data

(—) time-consuming

x y
f

Focus: Find good “features” for 

… via supervised learning

tf-idf, POS tags, parse-trees, …

x



Text Classification - Approaches Over Time
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Rule  
Engineering

Feature  
Engineering

Model Architecture 
Engineering

Automatically learn features from data

x y
f

… via supervised deep learning



Text Classification - Approaches Over Time
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Rule  
Engineering

Feature  
Engineering

Model Architecture 
Engineering

x y
f

CNNs, RNNs, Transformers, …

Automatically learn features from data

Focus: Find good model architectures f

… via supervised deep learning



Text Classification - Approaches Over Time
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Rule  
Engineering

Feature  
Engineering

Model Architecture 
Engineering

(—) “data-hungry” 

x y
f

Focus: Find good model architectures

CNNs, RNNs, Transformers, …

f

Automatically learn features from data

(+)  high predictive accuracy

… via supervised deep learning



Text Classification - Approaches Over Time
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Rule  
Engineering

Feature  
Engineering

Model Architecture 
Engineering

(—) “data-hungry” 

Focus: Find good model architectures

… via supervised deep learning

f

Automatically learn features from dataData Annotation Bottleneck in Supervised Learning 

DL = {(xi, yi)}N
i=1

•Requires many ground-truth annotations

•Manual annotation is expensive and time-consuming

x y
f



Supervision Engineering 
Learning With Limited Labeled Data
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Rule  
Engineering

Feature  
Engineering

Model Architecture 
Engineering

Leverage cheaper types of supervision 
… for training machine learning models 

x y
f

DL = {(xi, yi)}N
i=1

???

Supervision 
Engineering



This presentation
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An overview of approaches 
for supervision engineering 

x y
f

???
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Taxonomy
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Leveraging  
unlabeled data

Leveraging  
weak labels / domain knowledge

Leveraging auxiliary 
domains / tasks

Minimally Supervised 
Learning

Semi-Supervised 
Learning (SSL)

Weakly-Supervised  
Learning (WSL) 

Transfer Learning  
(TL)

[Nigam et al., 1999] 
[Joachims, 1999]


[Blum & Mitchell, 1998]

[Nigam & Ghani, 2000]


[Zhu et al., 2000]

[Seeger, 2006]


[Clark et al., 2018]

[Ruder & Plank, 2018]



SSL - Leveraging Unlabeled Data
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•Semi-Supervised Learning (SSL):  

•Small number of labeled data: 


•… and large number of unlabeled data:


DL = {(xi, yi)}N
i=1

DU = {xi}M
i=N+1

expensive

cheap



SSL - Leveraging Unlabeled Data
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•Semi-Supervised Learning (SSL):  

•Small number of labeled data: 


•… and large number of unlabeled data:


•SSL goal: 


•Learn 


•… by leveraging


•… more effectively than using just


DL = {(xi, yi)}N
i=1

DU = {xi}M
i=N+1

f : x → y

DL

DL + DU

expensive

cheap



SSL Taxonomy
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Semi-Supervised 
Learning

Generative 
Paradigm



Leveraging Unlabeled Data -  
Generative Modeling Approach
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•Use  to determine a better generative model 


-Unobserved labels: missing values


-Learning e.g., via Expectation-Maximization (EM)

DU P(X, Y ) [Nigam et al., 1999]



Leveraging Unlabeled Data -  
Generative Modeling Approach
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•Use  to determine a better generative model 


-Unobserved labels: missing values


-Learning e.g., via Expectation-Maximization (EM)

DU P(X, Y ) [Nigam et al., 1999]

(-) misspecification issues:

if modeling assumptions != natural data distribution performance may suffer



SSL Taxonomy
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Semi-Supervised 
Learning

Generative 
Paradigm

Discriminative 
Paradigm



Leveraging Unlabeled Data -  
Discriminative Modeling Approaches
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•Use  to determine a better discriminative model  DU P(Y |X)



Leveraging Unlabeled Data -  
Discriminative Modeling Approaches

21

•Use  to determine a better discriminative model  DU P(Y |X)

Need assumptions: “When are unlabeled examples informative?”  



Leveraging Unlabeled Data -  
Discriminative Modeling Approaches

22

•Use  to determine a better discriminative model  DU P(Y |X)

Need assumptions: “When are unlabeled examples informative?”  

+

—+

—

SVM



Leveraging Unlabeled Data -  
Discriminative Modeling Approaches
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•Use  to determine a better discriminative model  DU P(Y |X)

Need assumptions: “When are unlabeled examples informative?”  

+

—+

—

SVM Transductive SVM [Joachims, 1999]



Leveraging Unlabeled Data -  
Discriminative Modeling Approaches
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•Use  to determine a better discriminative model  DU P(Y |X)

Need assumptions: “When are unlabeled examples informative?”  

+

—+

—

SVM Transductive SVM [Joachims, 1999]

“clustering assumption”

-graph-based: label propagation from labeled to unlabeled wrt. similarity

[Zhu et al., 2000]



Leveraging Unlabeled Data -  
Discriminative Modeling Approaches
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•Use  to determine a better discriminative model  DU P(Y |X)

Need assumptions: “When are unlabeled examples informative?”  

+

—+

—

SVM Transductive SVM [Joachims, 1999]

“clustering assumption”

-graph-based: label propagation from labeled to unlabeled wrt. similarity

[Zhu et al., 2000]
(-) scalability issues



SSL Taxonomy
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Semi-Supervised 
Learning

Generative 
Paradigm

Discriminative 
Paradigm

Clustering 
Assumption

Co-Training  
Assumption
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Co-Training for Multi-View Learning

text

academic webpages

hyperlinks  
pointing to page

•Observation: sometimes examples could be described by multiple “views" 

x

x(1) x(2)views
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x

[Blum & Mitchell, 1998]

Co-Training for Multi-View Learning

θ(1) θ(2)

x(1) x(2)

y(1) y(2)

views

classifiers

predictions

•Observation: sometimes examples could be described by multiple “views" 

•Co-Training: agreement-based

-Setting: two classifiers ,  each considering a different view , θ(1) θ(2) x(1) x(2)

↔
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x

[Blum & Mitchell, 1998]

Co-Training for Multi-View Learning

θ(1) θ(2)

x(1) x(2)

y(1) y(2)

views

classifiers

predictions

•Observation: sometimes examples could be described by multiple “views" 

•Co-Training: agreement-based

-Setting: two classifiers ,  each considering a different view , 

-Goal: maximize agreement between ,  on unlabeled data 

θ(1) θ(2) x(1) x(2)

y(1) y(2) DU

↔
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x

[Blum & Mitchell, 1998]

Co-Training for Multi-View Learning

θ(1) θ(2)

x(1) x(2)

y(1) y(2)

views

classifiers

predictions

•Observation: sometimes examples could be described by multiple “views" 

•Co-Training: agreement-based

-Setting: two classifiers ,  each considering a different view , 

-Goal: maximize agreement between ,  on unlabeled data 

-How: confident  on unlabeled  used as extra training data for 

θ(1) θ(2) x(1) x(2)

y(1) y(2) DU

y(1) DU θ(2)

↔
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x

[Blum & Mitchell, 1998]

Co-Training for Multi-View Learning

θ(1) θ(2)

x(1) x(2)

y(1) y(2)

views

classifiers

predictions

•Observation: sometimes examples could be described by multiple “views" 

•Co-Training: agreement-based

-Setting: two classifiers ,  each considering a different view , 

-Goal: maximize agreement between ,  on unlabeled data 

-How: confident  on unlabeled  used as extra training data for 

-Maximum benefit when sufficiently diverse views: “conditional independence” 

θ(1) θ(2) x(1) x(2)

y(1) y(2) DU

y(1) DU θ(2)

↔
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x

[Blum & Mitchell, 1998]

Co-Training for Multi-View Learning

θ(1) θ(2)

x(1) x(2)

y(1) y(2)

views

classifiers

predictions

•Observation: sometimes examples could be described by multiple “views" 

(-) strong assumption: conditional independence unlikely to be satisfied in practice. 

•Co-Training: agreement-based

-Setting: two classifiers ,  each considering a different view , 

-Goal: maximize agreement between ,  on unlabeled data 

-How: confident  on unlabeled  used as extra training data for 

-Maximum benefit when sufficiently diverse views: “conditional independence” 

θ(1) θ(2) x(1) x(2)

y(1) y(2) DU

y(1) DU θ(2)

↔
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x

[Blum & Mitchell, 1998]

Co-Training for Multi-View Learning

θ(1) θ(2)

x(1) x(2)

y(1) y(2)

views

classifiers

predictions

•Observation: sometimes examples could be described by multiple “views" 

(-) strong assumption: conditional independence unlikely to be satisfied in practice. 

•Co-Training: agreement-based

-Setting: two classifiers ,  each considering a different view , 

-Goal: maximize agreement between ,  on unlabeled data 

-How: confident  on unlabeled  used as extra training data for 

-Maximum benefit when sufficiently diverse views: “conditional independence” 

θ(1) θ(2) x(1) x(2)

y(1) y(2) DU

y(1) DU θ(2)

↔

But, does it really need to be satisfied?



Extending Co-Training to More Practical Settings
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•Further work: good performance even if assumptions are violated!  
[Nigam & Ghani, 2000]



Extending Co-Training to More Practical Settings
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[Collins & Singer, 1999]
‣  “spelling” & “contextual” features of named entities   

-Divide features in diverse views: 

‣  Internal (forward and backward) features of a BiLSTM [Clark et al., 2018]

•Further work: good performance even if assumptions are violated!  

•Co-training could be applied even in single-view settings:

[Nigam & Ghani, 2000]



Extending Co-Training to More Practical Settings
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‣  3 diverse classifiers: add training data to  if ,  agreeθ1 θ2 θ3 [Zhou et al., 2005]

[Collins & Singer, 1999]


-Divide features in diverse views: 

‣  Internal (forward and backward) features of a BiLSTM [Clark et al., 2018]

-Use diverse architectures: 

•Further work: good performance even if assumptions are violated!  

•Co-training could be applied even in single-view settings:

[Nigam & Ghani, 2000]

‣  “spelling” & “contextual” features of named entities   



Extending Co-Training to More Practical Settings
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‣  3 diverse classifiers: add training data to  if ,  agreeθ1 θ2 θ3 [Zhou et al., 2005]

[Collins & Singer, 1999]


-Divide features in diverse views: 

‣  Internal (forward and backward) features of a BiLSTM [Clark et al., 2018]

[Ruder & Plank, 2018]

-Use diverse architectures: 

•Further work: good performance even if assumptions are violated!  

•Co-training could be applied even in single-view settings:

[Nigam & Ghani, 2000]

•Still a strong baseline in 2018! 

‣  “spelling” & “contextual” features of named entities   



Extending Co-Training to More Practical Settings
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‣  3 diverse classifiers: add training data to  if ,  agreeθ1 θ2 θ3 [Zhou et al., 2005]

[Collins & Singer, 1999]


-Divide features in diverse views: 

‣  Internal (forward and backward) features of a BiLSTM [Clark et al., 2018]

-Use diverse architectures: 

•Common pattern: 

•Encourage agreement between predictions… 

•… via maximally diverse views / classifiers

•Further work: good performance even if assumptions are violated!  

•Co-training could be applied even in single-view settings:

[Nigam & Ghani, 2000]

‣  “spelling” & “contextual” features of named entities   

[Ruder & Plank, 2018]•Still a strong baseline in 2018! 



SSL Summary
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[Joachims, 1999]

[Zhu et al., 2000]

Generative 
Paradigm

[Nigam et al., 1999]

Discriminative 
Paradigm

Clustering 
Assumption

Co-Training 
Assumption

[Blum & Mitchell, 1998]

[Collins & Singer, 1999]

[Nigam & Ghani, 2000]


[Zhou et al., 2005]

[Clark et al., 2018]


[Ruder & Plank, 2018]

Semi-Supervised 
Learning

•SSL leverages a few ground-truth labeled + a lot of unlabeled data



SSL Summary
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[Joachims, 1999]

[Zhu et al., 2000]

Generative 
Paradigm

[Nigam et al., 1999]

Discriminative 
Paradigm

Clustering 
Assumption

Co-Training 
Assumption

(-) Limitation: not leverage information captured through other signals/metadata

Semi-Supervised 
Learning

[Blum & Mitchell, 1998]

[Collins & Singer, 1999]

[Nigam & Ghani, 2000]


[Zhou et al., 2005]

[Clark et al., 2018]


[Ruder & Plank, 2018]

•SSL leverages a few ground-truth labeled + a lot of unlabeled data
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Minimally Supervised 
Learning

Semi-Supervised 
Learning (SSL)

Transfer Learning 
(TL)

incomplete 

supervision

weak

supervision

Weakly-Supervised 
Learning (WSL)



Weakly Supervised Learning (WSL)
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•What is weak supervision?

Inexact labelsInaccurate labels Domain heuristics
coarser-grained  
labels: DL = {(xi, y′�i)}N

i=1

y′�i = +

x1 x2
x3

yi = −y′�i ≠ yi

({x1, x2, x3}, y)

y1? y2? y3?
y = +

xi

has_keyword(“happy”)?

yi = +

xi

has_keyword(“sad”)?
yi = −



Weakly Supervised Learning (WSL)
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•What is weak supervision?

Inexact labelsInaccurate labels Domain heuristics

•Why leverage weak supervision?

coarser-grained  
labels: DL = {(xi, y′�i)}N

i=1

y′�i = +

x1 x2
x3

yi = −y′�i ≠ yi

({x1, x2, x3}, y)

y1? y2? y3?
y = +

xi

has_keyword(“happy”)?

yi = +

xi

has_keyword(“sad”)?
yi = −

Informative
correlate  

with ground-truth

Cheap

abundant /  
easy to collect

Scalable

can scale to huge 
amounts of unlabeled data



WSL Taxonomy
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Inaccurate 
 Labels

Domain  
Knowledge

Inexact 
 Labels

Weakly-Supervised 
Learning (WSL)



WSL - Leveraging Inaccurate Labels
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• Inaccurate Labels: observed label   may differ from ground-truth label y′�i yi

DL = {(xi, y′�i)}N
i=1



WSL - Leveraging Inaccurate Labels
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• Inaccurate Labels: observed label   may differ from ground-truth label y′�i yi

DL = {(xi, y′�i)}N
i=1

•Crowdsourcing noisy labels: 
-Redundancy trick: get multiple noisy annotations per instance 


-Estimating ground-truth :

‣majority voting is effective & widely used

‣model quality of each individual annotator effective

̂y
[Sheng et al., 2008]



WSL - Leveraging Inaccurate Labels
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• Inaccurate Labels: observed label   may differ from ground-truth label y′�i yi

DL = {(xi, y′�i)}N
i=1

•Crowdsourcing noisy labels: 
-Redundancy trick: get multiple noisy annotations per instance 


-Estimating ground-truth :

‣majority voting is effective & widely used

‣model quality of each individual annotator effective

̂y
[Sheng et al., 2008]

(-) expensive to achieve multiple labels per data point

Trade-off between quantity and redundancy [Sheng et al., 2008]



WSL - Leveraging Inaccurate Labels
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• Inaccurate Labels: observed label   may differ from ground-truth label y′�i yi

DL = {(xi, y′�i)}N
i=1

•Crowdsourcing noisy labels: 
-Redundancy trick: get multiple noisy annotations per instance


-Estimating ground-truth :

‣majority voting is effective & widely used

‣model quality of each individual annotator effective

̂y
[Sheng et al., 2008]

•Learning with noisy labels: single label per instance

[Natarajan et al., 2013]

- random classification noise:  has been flipped to  with probability  

-need assumptions about noise structure: 


‣class-conditional noise: 

yi y′�i pi

pi = P(y′�i |yi, xi) = P(y′�i |yi)

(-) expensive to achieve multiple labels per data point



WSL Taxonomy
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Inaccurate 
 Labels

Inexact 
 Labels

Weakly-Supervised 
Learning (WSL)



WSL - Leveraging Inexact Labels
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• Inexact Labels:  coarser-grained labels

+

—

? ? ?
??

? ? ?-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

({x1, x2, x3}, y)



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?

•Example: review sentiment classification

review rating 

individual 
sentences

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?
review rating 

individual 
sentences

“I loved the food”,   x1 = y1 = +
“The service was bad”, x2 = y2 = −
“Overall I liked it”, x3 = y3 = +

rating = +e.g.,

(-) introduces noisy labels

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

•Naive approach:  yi = y ∀i = 1..T

•Example: review sentiment classification



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?

•Multiple Instance Learning (MIL):  y = AGG(y1, …, yT)

review rating 

individual 
sentences

-“at least one” assumption: 


               (equivalently:     )y = + ⇔ ∃yi : yi = + y = max(y1, …, yT)
[Andrews et al., 2002]

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

•Example: review sentiment classification

(-) introduces noisy labels
•Naive approach:  yi = y ∀i = 1..T



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?
review rating 

individual 
sentences

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

(-) does not always hold true in text classification

•Example: review sentiment classification

(-) introduces noisy labels
•Naive approach:  yi = y ∀i = 1..T

•Multiple Instance Learning (MIL):  y = AGG(y1, …, yT)
-“at least one” assumption: 


               (equivalently:     )y = + ⇔ ∃yi : yi = + y = max(y1, …, yT)
[Andrews et al., 2002]



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?
review rating 

individual 
sentences

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

•Example: review sentiment classification

(-) introduces noisy labels
•Naive approach:  yi = y ∀i = 1..T

•Multiple Instance Learning (MIL):  y = AGG(y1, …, yT)
-“at least one” assumption: 


               (equivalently:     )y = + ⇔ ∃yi : yi = + y = max(y1, …, yT)
[Andrews et al., 2002]

y =
1
T ∑

i

yi
[Kotzias et al., 2015]•average:

-  More natural assumptions: 



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?
review rating 

individual 
sentences

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

•Example: review sentiment classification

(-) introduces noisy labels
•Naive approach:  yi = y ∀i = 1..T

•Multiple Instance Learning (MIL):  y = AGG(y1, …, yT)
-“at least one” assumption: 


               (equivalently:     )y = + ⇔ ∃yi : yi = + y = max(y1, …, yT)
[Andrews et al., 2002]

y =
1
T ∑

i

yi
[Kotzias et al., 2015]

(-) ignores the relative importance of instances

•average:

-  More natural assumptions: 



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?
review rating 

individual 
sentences

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

-  More natural assumptions: 

•Example: review sentiment classification

(-) introduces noisy labels
•Naive approach:  yi = y ∀i = 1..T

-“at least one” assumption: 


               (equivalently:     )y = + ⇔ ∃yi : yi = + y = max(y1, …, yT)
[Andrews et al., 2002]

[Angelidis & Lapata, 2018]y =
1
T ∑

i

αiyi

y =
1
T ∑

i

yi
[Kotzias et al., 2015]•average:

•weighted average:

•Multiple Instance Learning (MIL):  y = AGG(y1, …, yT)



WSL - Leveraging Inexact Labels
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+

—

? ? ?
??

? ? ?
review rating 

individual 
sentences

• Inexact Labels:  coarser-grained labels
-“Bags of instances”


-Observed bag labels 


-Unobserved instance labels 

y
yi

•Example: review sentiment classification

(-) introduces noisy labels
•Naive approach:  yi = y ∀i = 1..T

•Multiple Instance Learning (MIL):  y = AGG(y1, …, yT)
-“at least one” assumption: 


               (equivalently:     )y = + ⇔ ∃yi : yi = + y = max(y1, …, yT)

y =
1
T ∑

i

αiyi

y =
1
T ∑

i

yi•average:

•weighted average: [Angelidis & Lapata, 2018]

[Andrews et al., 2002]

[Kotzias et al., 2015]

also learned!

-  More natural assumptions: 



Weakly Supervised Learning (WSL)
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Weakly-Supervised 
Learning (WSL)

Inaccurate 
 Labels

Inexact 
 Labels



Weakly Supervised Learning (WSL)
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Weakly-Supervised 
Learning (WSL)

Inaccurate 
 Labels

Inexact 
 Labels

(-) restricted:  
• Only support “coarse” assumptions 

• Same assumptions regardless domain

• Worst case: what if NO training labels are available?



Weakly Supervised Learning (WSL)
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Inaccurate 
 Labels

[Yarowsky, 1995]

[Riloff & Jones, 1999]


[Collins & Singer, 1999]

[Agichtein & Gravano, 2000]


[Ganchev et al., 2010]

[Ratner et al., 2017]


Domain  
Knowledge

Inexact 
 Labels

Weakly-Supervised 
Learning (WSL)

•Focus: Leveraging domain knowledge as heuristics for weak supervision



What is “Domain Knowledge”?
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•What is domain knowledge in our setting? 
•Prior expert knowledge about the specific domain/task 


•Differrent knowledge for different tasks

•Examples of domain knowledge :  
•Domain-specific lexicons: 

•e.g., {‘angry’: -0.8, ‘happy’: 0.7, ‘of’: 0.0, …}

•Heuristic rules for each target class: 

•e.g., has_keyword(“happy”) -> positive sentiment  

•e.g., has_keyword(“money”) -> price topic


•e.g., has_emoji( ) -> positive sentiment

•Expert-curated knowledge base: 

Sentiment Classification

News Topics Classification

Emergency Events Detection

≠

≠
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How to Leverage “Domain Knowledge”?

θ

x

y

NO  
Domain Knowledge

θ

x

y

θ

x

y

Feature  
Augmentation

Model-Specific 
Changes
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How to Leverage “Domain Knowledge”?

θ

x

y

NO  
Domain Knowledge

θ

x

y

θ

x

y

Feature  
Augmentation

Model-Specific 
Changes

ALL 
REQUIRE 

SUPERVISION
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How to Leverage “Domain Knowledge”?

θ

x

y

NO  
Domain Knowledge

θ

x

y

Feature  
Augmentation

θ

x

y

Model-Specific 
Changes

θ

x

y

Domain Knowledge  
as Weak Supervision
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How to Leverage “Domain Knowledge”?

θ

x

y

NO  
Domain Knowledge

θ

x

y

Feature  
Augmentation

θ

x

y

Model-Specific 
Changes

θ

x

y

Domain Knowledge  
as Weak Supervision

•Our focus: leveraging domain knowledge as weak supervision 
-e.g., to create more labels 

-e.g., to create regularizers
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Leveraging Domain Knowledge  
as Weak Supervision

[Ganchev et al., 2010]•Posterior regularization (PR): 

-Use domain heuristics to create linear constraints  …  
-… on posterior distributions of latent variable models

-Constraints hold in expectation


Q

-Examples: 

POS tagging: There should be at least one “VERB” in y
Classification: Positive class should be predicted 75%
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Leveraging Domain Knowledge  
as Weak Supervision

[Ganchev et al., 2010]•Posterior regularization (PR): 

-Use domain heuristics to create linear constraints  …  
-… on posterior distributions of latent variable models

-Constraints hold in expectation 

Q

(-) limited expressiveness

-Examples: 

POS tagging: There should be at least one “VERB” in y
Classification: Positive class should be predicted 75%
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Leveraging Domain Knowledge  
as Weak Supervision

[Ganchev et al., 2010]•Posterior regularization (PR): 

-Use domain heuristics to create linear constraints  …  
-… on posterior distributions of latent variable models

-Constraints hold in expectation 

Q

•Data programming (DP): 
-Leverage heuristics as instance-level labeling functions (LFs) [Ratner et al., 2017]


(+) expressiveness

-Examples: 

POS tagging: There should be at least one “VERB” in y
Classification: Positive class should be predicted 75%

(-) limited expressiveness
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Leveraging Domain Knowledge  
as Weak Supervision

[Ganchev et al., 2010]•Posterior regularization (PR): 

-Use domain heuristics to create linear constraints  …  
-… on posterior distributions of latent variable models

-Constraints hold in expectation 

Q

•Data programming (DP): 
-Leverage heuristics as instance-level labeling functions (LFs) [Ratner et al., 2017]


(+) expressiveness

(-) PR and DP require a sufficiently large set of heuristics to effectively guide learning…

-Examples: 

POS tagging: There should be at least one “VERB” in y
Classification: Positive class should be predicted 75%

(-) limited expressiveness
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Collecting a sufficiently large set (lexicon / rules / KB) 

may be expensive

How to leverage 

a small seed set  (of words / rules / tuples)?S
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Leveraging Minimal Domain Knowledge  
via Bootstrapping

•Challenge: Seed set  has limited coverage (#datapoints where  applies)S S
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•Bootstrapping algorithm 
- Increase coverage without extra supervision! 
- Iterative procedure: 

Leveraging Minimal Domain Knowledge  
via Bootstrapping

[Yarowsky, 1995]

Model

expand

output

•Challenge: Seed set  has limited coverage (#datapoints where  applies)S S

S
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•Bootstrapping algorithm 
- Increase coverage without extra supervision! 
- Iterative procedure: 

Leveraging Minimal Domain Knowledge  
via Bootstrapping

[Yarowsky, 1995]

[Agichtein & Gravano, 2000]

•Many successful applications of bootstrapping!
-  Seed words for information extraction 

-  Seed rules for named entity recognition

-  Seed tuples for relation extraction

[Riloff & Jones, 1999]
[Collins & Singer, 1999]

S
expand

output

•Challenge: Seed set  has limited coverage (#datapoints where  applies)S S

Model



75

•Bootstrapping algorithm 
- Increase coverage without extra supervision! 
- Iterative procedure: 

Leveraging Minimal Domain Knowledge  
via Bootstrapping

[Yarowsky, 1995]

[Agichtein & Gravano, 2000]

•Many successful applications of bootstrapping!

•Warning: Model is unable to correct its own errors

Model

-  Seed words for information extraction 

-  Seed rules for named entity recognition

-  Seed tuples for relation extraction

[Riloff & Jones, 1999]
[Collins & Singer, 1999]

expand

output

•Challenge: Seed set  has limited coverage (#datapoints where  applies)S S

S
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•Bootstrapping algorithm 
- Increase coverage without extra supervision! 
- Iterative procedure: 

Leveraging Minimal Domain Knowledge  
via Bootstrapping

[Yarowsky, 1995]

[Agichtein & Gravano, 2000]

•Many successful applications of bootstrapping!

•Warning: Model is unable to correct its own errors

Model

-  Seed words for information extraction 

-  Seed rules for named entity recognition

-  Seed tuples for relation extraction

[Riloff & Jones, 1999]
[Collins & Singer, 1999]

expand

output

‣Use domain rules to evaluate quality of model outputs

‣Then, discard “bad” model outputs

[Agichtein & Gravano, 2000]

Quality Filter evaluate quality

•Challenge: Seed set  has limited coverage (#datapoints where  applies)S S

S



WSL - Summary
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Inaccurate 
 Labels

Domain  
Knowledge

Inexact 
 Labels

Weakly-Supervised 
Learning (WSL)

•WSL:  

-  Leverage inaccurate labels / inexact labels / prior domain knowledge … 


-  … as weak supervision during learning 



Taxonomy
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Leveraging  
unlabeled data

Leveraging  
weak labels / domain knowledge

Leveraging auxiliary 
domains / tasks

Minimally Supervised 
Learning

Semi-Supervised 
Learning (SSL)

Weakly-Supervised  
Learning (WSL)

Transfer Learning 
(TL)

[Daumé, 2007]

[Collobert & Weston, 2008]


[Wan, 2009]

[Kim, 2014]


[Ammar et al., 2016]

[Peters et al., 2018]


[Howard & Ruder, 2018]

[Devlin et al., 2019]



Transfer Learning (TL)
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Supervised Learning Domain Adaptation

𝒟S𝒟T

Multi-Task Learning

𝒯T

Target Task 
(e.g., sentiment classification)

Target Domain 
(e.g., news articles)

Source Domain 
(e.g., Wikipedia)

𝒟T

𝒯T

𝒟T

Source Tasks 
(e.g., POS tagging)

𝒯S 𝒯T

•Transfer Learning:  

-Leveraging auxiliary domains (domain adaptation)


-Leveraging auxiliary tasks (multi-task learning)



Transfer Learning (TL) Taxonomy
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Transfer 
Learning

Domain Adaptation Multi-Task Learning



Transfer Learning (TL) Taxonomy
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Transfer 
Learning

Domain Adaptation Multi-Task Learning

[Daumé, 2007]

[Wan, 2009]


[Ammar et al., 2016]
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•Goal: 


- Improve performance in 


-… by “transferring knowledge” from 

𝒟T

𝒟S

Domain Adaptation

Predictive features in   
could be useful in 

𝒟S
𝒟T

limited or no  
labeled data

many  
labeled data

𝒟S = 𝒟T

Ideal Scenario

𝒟S 𝒟T

Real Scenario

𝒟S 𝒟T

Worst Scenario

Supervised  
Learning

 is not useful𝒟S
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How to Leverage Source Domain?

•Domain:   

- feature space (e.g., English n-grams)

- marginal probability distribution

𝒟(𝒳, P(X))
𝒳 =
P(X) =
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How to Leverage Source Domain?

•Even simple “feature augmentation” approach is effective


-Create multiple copies of each feature: “shared” and “domain-specific”


-Model trained  and encouraged to rely on 


-Effect:   after training are better parameter estimates for 

𝒟S ∪ 𝒟T 𝒳SHARED

𝒳SHARED 𝒯T

[Daumé III, 2007]

𝒳S = 𝒳SHARED + 𝒳S−SPECIFIC

𝒳T = 𝒳SHARED + 𝒳T−SPECIFIC
𝒳S ∪ 𝒳T = 𝒳SHARED + 𝒳S−SPECIFIC + 𝒳T−SPECIFIC

•Domain:   

- feature space (e.g., English n-grams)

- marginal probability distribution

𝒟(𝒳, P(X))
𝒳 =
P(X) =
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How to Leverage Source Domain?

•Even simple “feature augmentation” approach is effective


-Create multiple copies of each feature: “shared” and “domain-specific”


-Model trained  and encouraged to rely on 


-Effect:   after training are better parameter estimates for 

𝒟S ∪ 𝒟T 𝒳SHARED

𝒳SHARED 𝒯T

[Daumé III, 2007]

𝒳S = 𝒳SHARED + 𝒳S−SPECIFIC

𝒳T = 𝒳SHARED + 𝒳T−SPECIFIC
𝒳S ∪ 𝒳T = 𝒳SHARED + 𝒳S−SPECIFIC + 𝒳T−SPECIFIC

•Domain:   

- feature space (e.g., English n-grams)

- marginal probability distribution

𝒟(𝒳, P(X))
𝒳 =
P(X) =

(-) expensive: requires many target labels (labels in ) 𝒟T
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How to Leverage Source Domain?
•Further approaches rely on fewer or no target labels


-Main idea: bring representations from D_S , D_T closer


-Objective: min_dist(  , ) + max_performance( )𝒟S 𝒟T 𝒟S
only unlabeled data source labeled data
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How to Leverage Source Domain?

-More “distant” domains -> harder problem

•Further approaches rely on fewer or no target labels


-Main idea: bring representations from D_S , D_T closer


-Objective: min_dist(  , ) + max_performance( )𝒟S 𝒟T 𝒟S

[Blitzer, 2007]

only unlabeled data source labeled data
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How to Leverage Source Domain?

(-) implicit assumption: overlap in feature spaces 𝒳S ∩ 𝒳T ⊋ Ø
not always true!

-More “distant” domains -> harder problem

•Further approaches rely on fewer or no target labels


-Main idea: bring representations from D_S , D_T closer


-Objective: min_dist(  , ) + max_performance( )𝒟S 𝒟T 𝒟S

[Blitzer, 2007]

only unlabeled data source labeled data
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How to Leverage Source Domain?

(-) implicit assumption: overlap in feature spaces 𝒳S ∩ 𝒳T ⊋ Ø

•Cross-lingual learning 

-Challenging:    (or so)  


-How to align  ?

𝒳S ∩ 𝒳T = Ø

𝒳S, 𝒳T

not always true!

-More “distant” domains -> harder problem

•Further approaches rely on fewer or no target labels


-Main idea: bring representations from D_S , D_T closer


-Objective: min_dist(  , ) + max_performance( )𝒟S 𝒟T 𝒟S

[Blitzer, 2007]

only unlabeled data source labeled data
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How to Leverage Source Domain?

(-) implicit assumption: overlap in feature spaces 𝒳S ∩ 𝒳T ⊋ Ø

•Cross-lingual learning 

-Challenging:    (or so)  


-How to align  ?

𝒳S ∩ 𝒳T = Ø

𝒳S, 𝒳T

not always true!

Parallel  
Documents  

Resource: Machine  
Translation 

not always  
available

expensive  
& error-prone

Bilingual 
Dictionaries

[Ammar et al., 2016][Wan, 2009]

not always 
available

Seed 
Dictionaries

effective?

[Artetxe et al., 2018]

Cons: 

-More “distant” domains -> harder problem

•Further approaches rely on fewer or no target labels


-Main idea: bring representations from D_S , D_T closer


-Objective: min_dist(  , ) + max_performance( )𝒟S 𝒟T 𝒟S

[Blitzer, 2007]

only unlabeled data source labeled data



Transfer Learning (TL) Taxonomy
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Transfer 
Learning

Domain Adaptation Multi-Task Learning
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•Goal: 


- Improve performance for 


-… by leveraging training data from source tasks 

𝒯T

𝒯S

Multi-Task Learning (MTL)

limited or no  
labeled data

many  
labeled data
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•Goal: 


- Improve performance for 


-… by leveraging training data from source tasks 

𝒯T

𝒯S

Multi-Task Learning (MTL)

limited or no  
labeled data

many  
labeled data

θS θT

θSHARED

Model  
Architecture

•Common practice: share representation across tasks

[Collobert & Weston, 2008]

“hard sharing”
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•Goal: 


- Improve performance for 


-… by leveraging training data from source tasks 

𝒯T

𝒯S

Multi-Task Learning (MTL)

limited or no  
labeled data

many  
labeled data

θS θT

•Training signals in  could improve generalization in 

• : effectively see more data

𝒯S 𝒯T

θSHARED

θSHARED

Model  
Architecture

•Common practice: share representation across tasks

[Caruana et al., 1997]

[Collobert & Weston, 2008]

•Why does MTL work?

“hard sharing”



95

•Goal: 


- Improve performance for 


-… by leveraging training data from source tasks 

𝒯T

𝒯S

Multi-Task Learning (MTL)

limited or no  
labeled data

many  
labeled data

θS θT

•Training signals in  could improve generalization in 

• : effectively see more data

𝒯S 𝒯T

θSHARED

θSHARED

Model  
Architecture

•Common practice: share representation across tasks

[Caruana et al., 1997]

[Collobert & Weston, 2008]

•Why does MTL work?

(-) Caveat: inefficient for big tasks as all source data required for target training


“hard sharing”



Transfer Learning (TL) Taxonomy
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Transfer 
Learning

Domain Adaptation Multi-Task Learning



Transfer Learning (TL) Taxonomy
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Transfer 
Learning

Domain Adaptation Multi-Task Learning

Unsupervised 
Pre-Training

[Collobert & Weston, 2008]

[Kim, 2014]


[Ammar et al., 2016]

[Peters et al., 2018]


[Howard & Ruder, 2018]

[Devlin et al., 2019]



Unsupervised Pre-Training
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•Sequential transfer learning approach:

𝒯S

Step1: Pre-train 
Learn “universal” representations R

Step2: Adapt 
Train target model using R

𝒟S 𝒟T

𝒯T
Transfer R



Explaining the Effectiveness of 
 Unsupervised Pre-Training
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•Why should unsupervised pre-training work?

-Because of “universal” 

-  captures general aspects of language structure/meaning

-  = useful features for  : no need to re-learn from scratch

R
R
R θT

𝒟S

𝒟T

𝒯S

 very big domain𝒟𝒮 :
(e.g., Wikipedia)

 unsupervised objective𝒯𝒮 :
(e.g., language modeling)

𝒯T



Common Practices in Unsupervised Pre-Training Step 
From Static to Contextual Representations
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•Early approaches: learn “static” word vectors R [Mikolov et al. 2013]
[Pennington et al. 2014]

(-) limited expressiveness:  

‣  may not encode compositional meaning (e.g., negation)

‣  may need more data to re-learn word composition from scratch

R
θT



Common Practices in Unsupervised Pre-Training Step 
From Static to Contextual Representations
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•Early approaches: learn “static” word vectors R [Mikolov et al. 2013]
[Pennington et al. 2014]

(-) limited expressiveness:  

‣  may not encode compositional meaning (e.g., negation)

‣  may need more data to re-learn word composition from scratch

R
θT

•Recent approaches: learn “contextual” language representations 

1. Pre-train deep language model

2. Transfer all layers

R
[Peters et al. 2018]

[Devlin et al. 2019]
[Howard & Ruder, 2018]

(+) Capture more complex language phenomena
‣ Lower layers may capture syntax

‣ Upper layers may capture long-range dependencies (e.g., coreference) 

(-) Computationally expensive: many GPU days & billions of parameters
(+) BUT: you (?) only pre-train once! 

[Peters et al. 2018]



Common Practices in Adaptation Step 
Feature Extraction Vs Fine-Tuning
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• “Feature extraction”: use  as “frozen” features


(+) computational efficiency: save space & time


(-) limited effectiveness:  

‣ task-specific features may not be captured (e.g., for rare events) 

R [Peters et al., 2018]
[Devlin et al. 2019]

[Kim, 2014]



Common Practices in Adaptation Step 
Feature Extraction Vs Fine-Tuning
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• “Feature extraction”: use  as “frozen” features


(+) computational efficiency: save space & time


(-) limited effectiveness:  

‣ task-specific features may not be captured (e.g., for rare events) 

• “Fine-tuning”: update  during training  

(+) effectiveness: general -> task-specific representations 

(-) expensive 

(-) risk of overfitting in limited labeled data settings 

‣ “Lack of knowledge of how to train [language models] effectivey” 


‣ Fine-tuning tricks: “gradual unfreezing”, “slanted triangular learning rates”,…


R

R θT

[Peters et al., 2018]

[Howard & Ruder, 2018]
[Kim, 2014]

[Devlin et al. 2019]

[Devlin et al. 2019]

[Kim, 2014]

[Howard & Ruder, 2018]
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Transfer 
Learning

Domain  
Adaptation

Unsupervised 
Pre-Training

Multi-Task 
Learning
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Transfer 
Learning

Domain  
Adaptation

•Caveat: Transfer learning could hurt performance (negative transfer)

-Most approaches implicitly assume related task/domains

-Answer “what” & “how” to transfer. Not “when" 

[Pan & Yang, 2009]

Unsupervised 
Pre-Training

Multi-Task 
Learning



Taxonomy

106

Leveraging  
unlabeled data

Leveraging  
weak labels / domain knowledge

Leveraging auxiliary

domains / tasks

Semi-Supervised 
Learning (SSL)

Weakly-Supervised 
Learning (WSL)

Transfer Learning 
(TL)

Minimally Supervised 
Learning

- Multiple Instance Learning

- Crowdsourcing

- Learning with Noisy Labels

- Posterior Regularization

- Data Programming

- Bootstrapping

- EM-based

- Clustering-based

- Co-training-based

- Feature Alignment

- Cross-Lingual Learning

- Weight Sharing

- Pre-training 

- Adaptation

Generative

Discriminative

Inaccurate Labels

Domain Knowledge

Domain Adaptation

Multi-Task Learning

Unsupervised  
Pre-Training

Inexact Labels



Full Taxonomy & Papers
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Leveraging  
unlabeled data

Leveraging  
weak supervision

Leveraging auxiliary

domains / tasks

Weakly-Supervised 
Learning

Minimally Supervised 
Learning

Generative 
EM

Clustering 
Based

Inaccurate  
Labels

Domain  
Knowledge

Domain  
Adaptation

Multi-Task  
Learning

Unsupervised  
Pre-Training

Inexact  
Labels

Co-Training 
Based

Semi-Supervised 
Learning

Transfer 
 Learning 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Thank you!

gkaraman@cs.columbia.edu 
https://gkaramanolakis.github.io
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